4.3 Article

Synthesis, characterization, antimicrobial, cytotoxic, DNA-interaction, molecular docking and DFT studies of novel di- and tri-organotin(IV) carboxylates using 3-(3-nitrophenyl)2-methylpropenoic acid

期刊

JOURNAL OF COORDINATION CHEMISTRY
卷 74, 期 14, 页码 2407-2426

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00958972.2021.1964019

关键词

Organotin(IV); cytotoxicity; antimicrobial potential; molecular docking; DNA interaction; DFT

资金

  1. Bahauddin Zakariya University, Multan

向作者/读者索取更多资源

One diorganotin(IV) and two triorganotin(IV) carboxylates were synthesized and characterized, showing antimicrobial potential and favorable binding to DNA. Computational analysis further revealed structural and reactivity patterns of the compounds.
One diorganotin(IV) [n-Bu2SnL2] (1) and two triorganotin(IV) carboxylates [n-Bu3SnL] (2) and [Ph3SnL] (3) [L = 3-(3-nitrophenyl) 2-methylpropenoic acid] were synthesized and characterized by elemental analysis, FT-IR and NMR (H-1, C-13) spectroscopies. The geometry of complexes and binding mode of ligand were worked out through FT-IR and NMR spectroscopies. The ligand coordinate with Sn via carboxylato oxygen in monodentate fashion leading to four coordinated geometries around Sn center. The effectiveness of complexes towards their antimicrobial and cytotoxic potential was evaluated and a significant extent of antimicrobial potential was observed with a few exceptions. Molecular docking studies were performed for these complexes to check their interaction with DNA. Results from this study revealed that these compounds can bind favorably with cisplatin binding site and targeting the major groove of DNA. The complex-DNA interaction study was also performed through UV-Vis spectroscopic technique and viscosity measurement, and the observed experimental results were well matched with theoretical results. Computational vibrational analysis, frontier molecular orbital (FMO), natural bond orbitals (NBOs), linear and non-linear optical (NLO) properties of ligand and complexes 1-3 were calculated by density functional theory (DFT) and time-dependent DFT (TDDFT) using CAM-B3LYP/6-31G (d,p) level of theory to evaluate spectroscopic, structural parameters and reactivity patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据