4.7 Article

A method of immersed layers on Cartesian grids, with application to incompressible flows

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 448, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2021.110716

关键词

Immersed boundary method; Computational fluid dynamics; Cartesian grid

资金

  1. U.S. Air Force Office of Scientific Research [FA9550-18-1-0440]

向作者/读者索取更多资源

The study introduces a discrete Heaviside function to mask fields on the grid and develop operators and identities for any surface geometry. The derived equations include familiar IBM forcing terms as well as additional terms to regularize field jumps onto the grid and specify constraints on field behavior on each side of the interface, referred to as immersed layers. The method is demonstrated on various incompressible flow problems, showcasing its effectiveness in simulation.
The immersed boundary method (IBM) of Peskin (J. Comput. Phys., 1977), and derived forms such as the projection method of Taira and Colonius (J. Comput. Phys., 2007), have been useful for simulating flow physics in problems with moving interfaces on stationary grids. However, in their interface treatment, these methods do not distinguish one side from the other, but rather, apply the motion constraint to both sides, and the associated interface force is an inseparable mix of contributions from each side. In this work, we define a discrete Heaviside function, a natural companion to the familiar discrete Dirac delta function (DDF), to define a masked version of each field on the grid which, to within the error of the DDF, takes the intended value of the field on the respective sides of the interface. From this foundation we develop discrete operators and identities that are uniformly applicable to any surface geometry. We use these to develop extended forms of prototypical partial differential equations, including Poisson, convection-diffusion, and incompressible Navier-Stokes, that govern the discrete masked fields. These equations contain the familiar forcing term of the IBM, but also additional terms that regularize the jumps in field quantities onto the grid and enable us to individually specify the constraints on field behavior on each side of the interface. Drawing the connection between these terms and the layer potentials in elliptic problems, we refer to them generically as immersed layers. We demonstrate the application of the method to several representative problems, including two-dimensional incompressible flows inside a rotating cylinder and external to a rotating square. (c) 2021 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据