4.7 Article

A framework of resource conservation process integration for eco-industrial site planning

期刊

JOURNAL OF CLEANER PRODUCTION
卷 316, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2021.128268

关键词

Industrial symbiosis; Pinch analysis; Industrial site planning; Resource conservation framework; Circular economy

向作者/读者索取更多资源

Industrial symbiosis, which promotes energy/material exchanges among different industrial enterprises, has gained increasing attention. Process integration is a powerful tool to optimize resource utilization efficiency and reduce environmental pollution. This research presents a framework for the systematic planning of an integrated industrial site using process integration tools.
The concept of industrial symbiosis that promotes energy/material exchanges among different industrial enterprises has received growing attention. Industrial symbiosis synergistically engages traditionally separate entities to gain competitive advantages and efficiency in the consumption and utilisation of resources, utilities and wastes. Process integration is a powerful tool to optimise processes and identify scope for industrial symbiosis. Numerous studies have investigated the application of process integration in regard to the management of material resources. Previous works to guide systematic industrial symbiosis planning has only focused on lowcarbon emission sites. There is a need to develop a systematic guideline for industrial site planners to use for the systematic planning of integrated industrial sites that also considers other resources such as waste and water. This research presents a framework for the systematic planning of an integrated industrial site using process integration tools. The framework comprises eight main stages and includes six process integration tools to systematically guide the planning and design of industrial sites to minimise energy, water, waste and emissions. A 95.58% reduction of waste disposal through landfilling, a 33.4% reduction in carbon emissions from waste disposal, a 45.70% reduction in steam, a 27.48% cooling water savings, 100% power reduction, a 49.10% reduction in CO2 emissions, 100% fresh CO2 savings, and a 100% freshwater savings for water headers 1 and 2 are obtained from the case study applying the framework proposed. The framework application will provide insights on how all the utilities and materials streams in the involving industries can be comprehensively integrated, hence reducing the need for fresh resources and promoting sustainability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据