4.7 Article

Adsorption of semiflexible polymers in crowded environments

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 155, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0054797

关键词

-

向作者/读者索取更多资源

Macromolecular crowding in cellular and cell-free systems can affect the interactions of semiflexible biopolymers with surfaces. The adsorption of semiflexible polymers on repulsive surfaces is promoted by stiffer polymers, smaller crowding particles, and larger volume fractions of crowders. Crowding-induced transitions from non-adsorbed to partially and strongly adsorbed states occur at smaller values of bending stiffness as the volume fraction of crowders increases.
Macromolecular crowding is a feature of cellular and cell-free systems that, through depletion effects, can impact the interactions of semiflexible biopolymers with surfaces. In this work, we use computer simulations to study crowding-induced adsorption of semiflexible polymers on otherwise repulsive surfaces. Crowding particles are modeled explicitly, and we investigate the interplay between the bending stiffness of the polymer and the volume fraction and size of crowding particles. Adsorption to flat surfaces is promoted by stiffer polymers, smaller crowding particles, and larger volume fractions of crowders. We characterize transitions from non-adsorbed to partially and strongly adsorbed states as a function of bending stiffness. The crowding-induced transitions occur at smaller values of the bending stiffness as the volume fraction of crowders increases. Concomitant effects on the size and shape of the polymer are reflected by crowding- and stiffness-dependent changes to the radius of gyration. For various polymer lengths, we identify a critical crowding fraction for adsorption and analyze its scaling behavior in terms of polymer stiffness. We also consider crowding-induced adsorption in spherical confinement and identify a regime in which increasing the bending stiffness induces desorption. The results of our simulations shed light on the interplay of crowding and bending stiffness on the spatial organization of biopolymers in encapsulated cellular and cell-free systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据