4.6 Review

From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 297, 期 4, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2021.101140

关键词

-

资金

  1. NIH NIDDK [F32DK127632]
  2. NIH [R01 AR071263, DK110656, AG069679]
  3. [DoD-W81XWH-19-1-0213]

向作者/读者索取更多资源

Biological energy transduction is crucial for physiological processes in cells, with technologies like extracellular flux analysis making assessment of metabolic parameters more accessible. However, historical assumptions and experimental limitations should be considered when interpreting data.
Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential next steps to be taken that can address these highlighted challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据