4.6 Article

Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 297, 期 2, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jbc.2021.100927

关键词

-

资金

  1. NIH [T32GM007750, R01 DK119192]
  2. Howard Hughes Medical Institute

向作者/读者索取更多资源

Protein-interaction domains, specifically the docking and dimerization (D/D) domain, play a crucial role in cell signaling and are highly conserved. Analysis has revealed that D/D domain proteins can be classified into different subgroups based on their similarity to PKA regulatory subunits. Research has shown that the D/D fold maintains the integrity of cellular structures.
Protein-interaction domains can create unique macromolecular complexes that drive evolutionary innovation. By combining bioinformatic and phylogenetic analyses with structural approaches, we have discovered that the docking and dimerization (D/D) domain of the PKA regulatory subunit is an ancient and conserved protein fold. An archetypal function of this module is to interact with A-kinase-anchoring proteins (AKAPs) that facilitate compartmentalization of this key cellsignaling enzyme. Homology searching reveals that D/D domain proteins comprise a superfamily with 18 members that function in a variety of molecular and cellular contexts. Further in silico analyses indicate that D/D domains segregate into subgroups on the basis of their similarity to type I or type II PKA regulatory subunits. The sperm autoantigenic protein 17 (SPA17) is a prototype of the type II or R2D2 subgroup that is conserved across metazoan phyla. We determined the crystal structure of an extended D/D domain from SPA17 (amino acids 1-75) at 1.72 A resolution. This revealed a four-helix bundle-like configuration featuring terminal beta-strands that can mediate higher order oligomerization. In solution, SPA17 forms both homodimers and tetramers and displays a weak affinity for AKAP18. Quantitative approaches reveal that AKAP18 binding occurs at nanomolar affinity when SPA17 heterodimerizes with the ropporin-1-like D/D protein. These findings expand the role of the D/D fold as a versatile proteininteraction element that maintains the integrity of macromolecular architectures within organelles such as motile cilia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据