4.6 Article

Hemocompatibility of polymers for use in vascular endoluminal implants

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 138, 期 43, 页码 -

出版社

WILEY
DOI: 10.1002/app.51277

关键词

biocompatibility; biodegradable; biomaterials; biomedical applications; drug delivery systems

资金

  1. University of Arizona

向作者/读者索取更多资源

Implanted polymers for cardiovascular applications serve as structural supports, barriers, or means for drug delivery. In vitro studies show that PEGylated materials have less thrombus formation and are preferred for implantation.
Implanted polymers for cardiovascular applications may function as structural supports, barriers, or provide a means for local drug delivery. Several thermoplastic biodegradable drug delivery polymers are potential candidates for blood-contacting implant applications. For intravascular applications specifically, a criterion for material selection is the intrinsic hemocompatibility of the baseline polymer. As an initial screening approach for selection of polymers for in vivo use, thin films of polyesters: poly(e-caprolactone) (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA); polyanhydrides: poly(fatty acid dimer-co-sebacic acid) (PFAD:SA) and poly(biscarboxyphenoxypropane-co-sebacic acid) (PCPP:SA); and poly(ethylene glycol) (PEG)-ylated polyesters: PLA:PEG, PCL:PEG and PCL:PLA:PEG polymers were spin-cast on glass cover slips and placed in an in vitro flow system exposing them at a controlled shear to overflowing human whole blood. Platelet adherence, aggregate formation, and thrombus formation, as well as leukocyte adherence were assessed following 5 min of flow. At 5 min of flow the rank order of materials, in terms of least to most thrombogenic was: PCL < PFAD:SA < PCPP:SA < PLGA < PLA. All PEGylated materials, in general, had less thrombus formation than baseline unmodified materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据