4.6 Article

Preparation and characterization of hydrophilic and antibacterial silver decorated silica-grafted-poly(vinylpyrrolidone) (Ag-SiO2-PVP) nanoparticles for polymeric nanocomposites

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 138, 期 38, 页码 -

出版社

WILEY
DOI: 10.1002/app.50977

关键词

antibacterial; grafting; hydrophilic; poly(vinylpyrrolidone); silica nanoparticles; silver nanoparticles

资金

  1. Sahand University of Technology [30/9153]
  2. Iran National Science Foundation: INSF [96016280]

向作者/读者索取更多资源

The hydrophilic and antibacterial Ag-SiO2-PVP nanoparticles were successfully synthesized through multiple steps. The vinyl groups and PVP brushes were successfully generated onto the silica nanoparticles using silanization and grafting-through polymerization methods. The Ag-SiO2-PVP nanoparticles showed outstanding bactericidal properties when assessed using the plate colony counting method.
Hydrophilic antibacterial silver decorated silica-grafted-poly(vinylpyrrolidone) (Ag-SiO2-PVP) nanoparticles were successfully synthesized in multiple steps. In this regard, silanization of the silica nanoparticles was performed with different concentrations of vinyltrimethoxysilane (VTS) to generate vinyl groups onto the nanoparticles surface. Obtained results showed that by increasing the VTS concentration the amount of vinyl groups on the surface of the silica nanoparticles increased while nanoparticles agglomeration did not occur. Then, poly(vinylpyrrolidone) PVP brushes were grafted onto the silanized silica nanoparticles (SiO2-VTS) via grafting-through polymerization method to obtain PVP-grafted silica nanoparticles (SiO2-PVP). Fourier transform infrared spectroscopy, thermal gravimetric analysis, and dynamic light scattering confirmed the successful generation of the vinyl groups and PVP brushes onto the silica nanoparticles. Finally, Ag-SiO2-PVP nanoparticles were prepared by synthesizing silver nanoparticles onto the SiO2-PVP nanoparticles to render them antibacterial. Energy dispersive X-ray spectroscopy showed that highest grafting of silver nanoparticles onto the SiO2-PVP nanoparticles was obtained for the nanoparticles with highest content of vinyl groups. X-ray photoelectron spectroscopy was used to identify the elements and their chemical structure for the synthesized nanoparticles. Plate colony counting method was applied to assess the antibacterial effects of the Ag-SiO2-PVP nanoparticles which revealed outstanding bactericidal properties of them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据