4.6 Article

Cellulose nanocrystal-mediated assembly of graphene oxide in natural rubber nanocomposites with high electrical conductivity

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 138, 期 48, 页码 -

出版社

WILEY
DOI: 10.1002/app.51460

关键词

3D hierarchical nanostructure; Cellulose nanocrystals; Graphene oxide; Natural rubber; Self-assembly

资金

  1. PolyNat Carnot Institut [~ANR-11-CARN-030-01]
  2. Labex TEC 21 [~ANR11-LABX-0030]
  3. China Scholarship Council [201806950016]

向作者/读者索取更多资源

A green and powerful strategy for preparing CNC/GO/NR nanocomposites with a 3D hierarchical conductive network was reported. The CNC/GO nanohybrids, with enhanced stability due to hydrogen bonding interactions, significantly improved electrical conductivity and mechanical properties of the nanocomposites. The nanocomposite with 4 wt% GO and 5 wt% CNC exhibited a nine orders of magnitude increase in electrical conductivity compared to the nanocomposite with only 4 wt% GO.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据