4.5 Article

Lung ultrasound features and relationships with respiratory mechanics of evolving BPD in preterm rabbits and human neonates

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 131, 期 3, 页码 895-904

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00300.2021

关键词

evolving BPD; lung ultrasound; preterm; respiratory mechanics

向作者/读者索取更多资源

Comparative study of lung ultrasound and mechanical characteristics in preterm rabbits and human neonates with evolving BPD revealed that the preterm rabbit model can fairly reproduce the features of evolving BPD seen in clinical practice, with similar lung ultrasound findings and altered lung mechanics parameters. The study also demonstrated consistent relationships between ultrasound-assessed lung aeration and airway resistances in both the animal model and human neonates.
Evolving bronchopulmonary dysplasia (BPD) is characterized by impaired alveolarization leading to lung aeration inhomogeneities. Hyperoxia-exposed preterm rabbits have been proposed to mimic evolving BPD; therefore, we aimed to verify if this model has the same lung ultrasound and mechanical features of evolving BPD in human neonates. Semiquantitative lung ultrasound and lung mechanics measurement was performed in 25 preterm rabbits (28days of gestation) and 25 neonates (mean gestational age approximate to 26wk) with evolving BPD. A modified rabbit lung ultrasound score (rLUS) and a validated neonatal lung ultrasound score (WS) were used. Lung ultrasound images were recorded and evaluated by two independent observers blinded to each other's evaluation. Lung ultrasound findings were equally heterogeneous both in rabbits as in human neonates and encompassed all the classical lung ultrasound semiology. Lung ultrasound and histology examination were also performed in 13 term rabbits kept under normoxia as further control and showed the absence of ultrasound and histology abnormalities compared with hyperoxia-exposed preterm rabbits. The interrater absolute agreement for the evaluation of lung ultrasound images in rabbits was very high [ICC: 0.989 (95%Cl: 0.975-0.995); P < 0.0001], and there was no difference between the two observers. Lung mechanics parameters were similarly altered in both rabbits and human neonates. There were moderately significant correlations between airway resistances and lung ultrasound scores in rabbits (rho = 0.519; P = 0.008) and in neonates (rho = 0.409; P = 0.042). In conclusion, the preterm rabbit model fairly reproduces the lung ultrasound and mechanical characteristics of preterm neonates with evolving BPD. NEW & NOTEWORTHY We have reported that hyperoxia-exposed preterm rabbits and human preterm neonates with evolving BPD have the same lung ultrasound appearance, and that lung ultrasound can be fruitfully applied on this model with a brief training. The animal model and human neonates also presented the same relationship between semiquantitative ultrasound-assessed lung aeration and airway resistances. In conclusion, this animal model fairly reproduce evolving BPD as it is seen in clinical practice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据