4.6 Article

Highly conductive graphite matrix/copper composites by a pressureless infiltration method

期刊

JOURNAL OF APPLIED PHYSICS
卷 130, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0056198

关键词

-

资金

  1. National Natural Science Foundation of China [52077182, 51837009, U19A20105]
  2. Fundamental Research Funds for the Central Universities [2682018CX17]
  3. National Rail Transit Electrification and Automation Engineering Technology Research Project

向作者/读者索取更多资源

This study introduces a pressureless infiltration strategy to prepare highly conductive graphite matrix/copper composites. By constructing a tungsten carbide network in the graphite matrix, the capillary force was transformed from the resistance mode to the impetus mode, reducing the contact angle of graphite/copper and achieving good interfacial bonding. The electrical conductivity of the composites reaches 15.1 x 10(5) S/m, surpassing industry standards.
Graphite matrix/copper composites have found significant potential uses in numerous areas. Until now, a high ambient gas pressure has to be applied to overcome the non-wettability between the copper melt and graphite matrix, which has restricted the technological and economic efficiencies, as well as the composite performance. In this paper, we have proposed a pressureless infiltration strategy to realize the preparation of highly conductive graphite matrix/copper composites. A tungsten carbide network is first in situ constructed in the graphite matrix, transforming the capillary force from the resistance mode to the impetus mode. Results show that the contact angle of graphite/copper decreased from 138.5 degrees to 23 degrees due to the constructed tungsten carbide network. The composites exhibit good interfacial bonding, and the electrical conductivity reaches 15.1 x 10(5 )S/m, far higher than the requirement of the industry standard.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据