4.3 Article

Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids

期刊

JOURNAL OF ANATOMY
卷 240, 期 1, 页码 34-49

出版社

WILEY
DOI: 10.1111/joa.13537

关键词

Antarctic icefish; bone microstructure; bone mineral density; comparative anatomy; micro-CT; notothenioid; skeletal evolution

资金

  1. NSERC [RGPIN 435655-201, RGPIN 2014-05563]
  2. US National Science Foundation [ANT-0944517, OPP-1955368, OPP-1947040, OPP-1543383]
  3. National Institute of Health [R01AG031922]

向作者/读者索取更多资源

The reduced bone in icefishes was not attributed to changes in bone microstructure or bone mineral density at a systemic level, but rather occured only at the gross anatomic level. Microstructural measures and bone mineral density were similar among icefish and non-icefish Antarctic notothenioids.
Ancestors of the Antarctic icefishes (family Channichthyidae) were benthic and had no swim bladder, making it energetically expensive to rise from the ocean floor. To exploit the water column, benthopelagic icefishes were hypothesized to have evolved a skeleton with reduced bone, which gross anatomical data supported. Here, we tested the hypothesis that changes to icefish bones also occurred below the level of gross anatomy. Histology and micro-CT imaging of representative craniofacial bones (i.e., ceratohyal, frontal, dentary, and articular) of extant Antarctic fish species specifically evaluated two features that might cause the appearance of reduced bone: bone microstructure (e.g., bone volume fraction and structure linear density) and bone mineral density (BMD, or mass of mineral per volume of bone). Measures of bone microstructure were not consistently different in bones from the icefishes Chaenocephalus aceratus and Champsocephalus gunnari, compared to the related benthic notothenioids Notothenia coriiceps and Gobionotothen gibberifrons. Some quantitative measures, such as bone volume fraction and structure linear density, were significantly increased in some icefish bones compared to homologous bones of non-icefish. However, such differences were rare, and no microstructural measures were consistently different in icefishes across all bones and species analyzed. Furthermore, BMD was similar among homologous bones of icefish and non-icefish Antarctic notothenioids. In summary, reduced bone in icefishes was not due to systemic changes in bone microstructure or BMD, raising the prospect that reduced bone in icefish occurs only at the gross anatomic level (i.e., smaller or fewer bones). Given that icefishes exhibit delayed skeletal development compared to non-icefish Antarctic fishes, combining these phenotypic data with genomic data might clarify genetic changes driving skeletal heterochrony.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据