4.7 Article

Influence of heat treatment on the microstructure evolution and elevated temperature mechanical properties of Hastelloy-X processed by laser directed energy deposition

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 868, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2021.159207

关键词

Laser processing; High-temperature alloys; Microstructure; Mechanical properties

资金

  1. Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Govt. of India
  2. Homi Bhabha National Institute, Mumbai

向作者/读者索取更多资源

This study investigates the microstructure and elevated temperature mechanical properties of Hastelloy-X bulk structures built using Laser Directed Energy Deposition (LDED). The results show differences in microstructure between as-built and heat-treated samples, and variations in mechanical properties with test temperature. Heat-treated samples exhibit similar yield strength to conventionally processed Hast-X, while other mechanical properties vary with temperature.
The microstructure and elevated temperature mechanical properties of Hastelloy-X (Hast-X) bulk structures built using Laser Directed Energy Deposition (LDED) based Additive Manufacturing is investigated in as-built (AB) and heat-treated (HT) conditions. Microscopic analysis show the presence of fine cellular and dendritic growth in AB samples and recrystallized and coarsened equiaxed grains in HT samples. The AB samples revealed random grain orientation with slightly preferred texture along the < 100 > plane, unlike in the HT samples. Further, the AB samples revealed the elemental segregation of Mo, Si and C and precipitation of Mo-rich carbides, which are absent in the HT samples. Micro tensile test results at ambient temperature showed excellent agreement with the mechanical properties obtained from automated ball indentation (ABI) tests of LDED built Hast-X in AB condition. Subsequently, ABI tests are used to evaluate the mechanical properties in AB and HT conditions from ambient temperature to 873 K. It is observed that the strength and ABI hardness decreased with increase in test temperature, while the strain hardening exponent and uniform ductility showed an opposite trend. The yield strength (YS) of AB sample is higher than conventional sample, while YS of HT sample is similar to the YS of conventionally processed wrought Hast-X taken from literature at all test temperatures. Further, the indentation size and material pile up around the indentation also increased with heat-treatment and increase in the test temperature. This study paves a way towards the successful deployment of LDED built Hast-X for various applications in hostile conditions. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据