4.1 Article

Size-Specific Filtration Performance of N95 Respirators After Decontamination by Moist Heat Incubation

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/jamp.2021.0002

关键词

COVID-19; decontamination; filtration efficiency; most penetrating particle size; pandemic; respirator

资金

  1. Alliance Grant from the Canadian Natural Sciences and Engineering Research Council

向作者/读者索取更多资源

The study showed that moist heat incubation can be used for respirator decontamination without significant decrease in filtration efficiency. The impact of moist heat incubation may vary among different respirator models, hence requiring individual evaluation. Evaluating size-specific filtration efficiency across various particle sizes is crucial in determining the most penetrating particle size for respirators.
Background: Decontamination and reuse of respirators have been proposed to mitigate the shortage of respirators during pandemics. The U.S. National Institute for Occupational Safety and Health (NIOSH)'s respirator filtration efficiency (FE) test has been used to confirm that decontamination procedures maintain minimum FE above 95% for N95s and similar respirators. However, it was hypothesized that the limited range of test particle sizes may not include the most penetrating particle size (MPPS) for all respirators, especially after decontamination by moist heat incubation (MHI). Materials and Methods: A custom-designed apparatus was used to measure size-specific FE for respirators across particle size bins between aerodynamic diameter of 0.07 and 1.97 mu m using an electrical low-pressure impactor. FEs were measured for two N95 respirator models before and after 10 cycles of MHI. In addition, pressure drop through the respirator materials and scanning electron microscope (SEM) images of respirator layers were obtained before and after MHI. Results: For Kimtech (TM) brand N95 respirators, FE was not reduced at any size after MHI. For Safe Life brand N95s, FE was below 95% before MHI and decreased significantly after MHI. The MPPS for this respirator was outside the range defined in NIOSH test protocol, and increased after MHI. There was no appreciable change to the pressure drop through the two respirator models after MHI, nor was any deterioration in fiber integrity visible in SEM images. Conclusions: Based on the results of the present study and other studies in the literature, MHI can be used to decontaminate respirators without significant decrease in FE. However, potential effects of MHI on FE need to be assessed for each respirator model. The ability to evaluate size-specific FE across a wide range of particle sizes is important in identifying the MPPS and associated FE of respirators before and after MHI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据