4.8 Article

In-depth analysis of N2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis

期刊

ISME JOURNAL
卷 15, 期 11, 页码 3357-3374

出版社

SPRINGERNATURE
DOI: 10.1038/s41396-021-01004-x

关键词

-

资金

  1. ETH Zurich

向作者/读者索取更多资源

Primary tropical forests have significant gaseous nitrogen losses, with N2O release being a major concern due to its global warming potential. Studies in the Congo Basin found lower N2O fluxes compared to other tropical regions, and microbial reduction of N2O to N-2 within the soil may explain the observed low surface N2O fluxes.
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N-2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin's lowland forests (0.97 +/- 0.53 kg N ha(-1) year(-1)) were comparable to those in its montane forest (0.88 +/- 0.97 kg N ha(-1) year(-1)). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N-2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N-2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N-2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据