4.7 Article

Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2021.106935

关键词

Nanofluids; Corrugated plate heat exchanger; Friction factor; Heat transfer; Entropy; Exergy efficiency

资金

  1. Taif University, Taif, Saudi Arabia [TURSP2020/49]
  2. Taif University

向作者/读者索取更多资源

The experimental study on nickel/water nanofluids flow in a corrugated plate heat exchanger shows significant improvements in overall heat transfer performance with increasing nanoparticle loadings and Reynolds numbers, but this enhancement is accompanied by an increase in friction factor and pumping power.
In the present study, the heat transfer, entropy, friction factor, exergy efficiency, pumping power, and performance index ratio of nickel/water nanofluids flow in a corrugated plate heat exchanger are investigated experimentally. The nickel nanoparticles were synthesized using the chemical precipitation method and characterized by various techniques. The stable water based nickel nanofluids were prepared with particle volume concentrations of 0.1%, 0.3%, and 0.6%. The experiments were conducted at nanofluids Reynolds numbers ranged from 300 to 1000. The properties of nickel nanofluid are evaluated experimentally as well. The thermal conductivity and viscosity enhancements are 33.92%, and 67.45% at a temperature of 60 ?C compared to the base fluid data. The increase of nanoparticle loadings and Reynolds number leads to an augmentation of the overall heat transfer coefficient, heat transfer coefficient, and Nusselt number. The overall heat transfer coefficient, convective heat transfer, and Nusselt number enhanced by 38.60%, 57.35%, and 42.68% at 0.6 vol % of nanofluid and a Reynolds number of 707, respectively compared to water data. The thermal entropy generation is decreased by 15.70%, while frictional entropy generation and pumping power are increased by 68.29% and 61.77%, respectively at 0.6 vol % of nanofluid and a Reynolds number of 707 against water data. The exergy efficiency was enhanced by 42.27% at 0.6 vol % of nanofluid and a Reynolds number of 303 compared to water data. The performance index ratio is decreased with the use of nanofluids due to the increase of viscosity, friction factor, pressure drop, and pumping power.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据