4.7 Article

Microstructure and hardening induced by neutron irradiation in single crystal, ITER specification and cold rolled tungsten

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijrmhm.2021.105522

关键词

Tungsten; Neutron irradiation; Microstructure; Hardening; ITER

资金

  1. Euratom research and training programme [633053]

向作者/读者索取更多资源

The study found that the main contribution to hardening at high irradiation temperatures comes from voids, while dislocation loops only provide a significant contribution at 600 degrees Celsius irradiation. Excellent agreement between model predictions and experimentally measured hardness increase was observed for single crystal and ITER specification grade, while hardening induced in cold rolled plate was overestimated by the model.
In this work, we have performed neutron irradiation and sub-sequent microstructural and micro-hardness measurements on a series of tungsten grades. The neutron irradiation was performed in BR2 reactor up to 0.2 dpa at 600, 800 and 1200 degrees C. The selected irradiation temperatures correspond to a large range of the operation of tungsten in ITER as armour for the divertor. The applied fast neutron flux is representative of ITER irradiation conditions in terms of damage rate. The primary purpose of the study was to establish the relation between the initial microstructure, the resulting irradiation-induced microstructure and corresponding irradiation hardening. The microstructure was studied using transmission electron microscopy (TEM) and hardening was assessed by micro-hardness measurements. The obtained TEM results were used to predict the hardening employing the dispersed barrier model and strength coefficients established for the single crystal from the open literature. Based on the performed analysis, it appeared that the main contribution to the hardening at high irradiation temperature originates from the voids, while the dislocation loops provide a comparable contribution (30-50%) only under irradiation at 600 degrees C. Excellent agreement between the model prediction and experimentally measured hardness increase was obtained for the single crystal and ITER specification grade without any additional adjustment, while the hardening induced in the cold rolled plate was essentially overestimated by the model. This result suggests that the cold rolled tungsten plate exhibits an alternative mechanisms of the plastic deformation besides the conventional dislocation glide and multiplication, and this alternative mechanism is impacted by the irradiation less severely compared to the prediction coming from the dispersed barrier model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据