4.4 Article

Exploring the enhanced performance of Sb2S3/doped-carbon composites as potential anode materials for sodium-ion batteries: A density functional theory approach

期刊

出版社

WILEY
DOI: 10.1002/qua.26779

关键词

DFT; energy storage; heteroatom doping; Na-ion battery

资金

  1. Consejo Nacional de Ciencia y Tecnologia [A1-S-13294, A1-S-15336]
  2. DGTIC-UNAM [LANCAD-UNAM-DGTIC-310, LANCAD-UNAM-DGTIC-370]
  3. Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico [PAPIIT-IA102820, PAPIIT-IG100720, PAPIIT-IN109319]

向作者/读者索取更多资源

This study investigates the adsorption process of Na adatoms into Sb2S3/carbon and Sb2S3/heteroatom doped-carbon through density functional level calculations, showing that sulfur and antimony doped-carbon substrates enhance storage capacity and cycling stability. The research explores the potential of tailoring 2D carbon anodes with doping heteroatoms in the presence of adsorbed Sb2S3 for improved performance in sodium ion batteries.
The improvement of performance in sodium ion batteries is a subject of intense research. In this work, a first principle calculations study at the density functional level on the adsorption process of Na adatoms into Sb2S3/carbon (Sb2S3/CM) and Sb2S3/heteroatom doped-carbon (Sb2S3/S-CM, Sb2S3/Sb-CM) is presented. The sulfur and antimony doped-carbon substrates enhance the adsorption energies, charge transfer, specific capacities and the diffusion properties of Na adatoms into the Sb2S3/S-CM and Sb2S3/Sb-CM composite systems. The Na storage capacity trend and the open circuit voltage profile follows the trend observed in previous experimental results. This work explores perspectives through tailoring 2D carbon anodes with doping heteroatoms in the presence of adsorbed Sb2S3 for an outstanding storage capacity and cycling stability architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据