4.6 Article

Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction

出版社

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/HFF-04-2021-0298

关键词

Suction; Moving wedge; Activation energy; Binary chemical reaction; Hybrid nanofluids

资金

  1. Ministry of Higher Education Malaysia [FRGS/1/2020/STG06/UKM/01/1]

向作者/读者索取更多资源

This study aims to analyze the flow and heat transfer performance of hybrid nanofluid on a moving wedge, revealing that adding nanoparticles improves heat transfer efficiency, while the activation energy factor reduces mass transfer rates and the binary reaction rate increases mass transfer rates with multiple solutions provided.
Purpose The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims to analyse the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge. Design/methodology/approach The multivariable differential equations with partial derivatives are converted into a specific type of ordinary differential equations by using valid similarity transformations. The reduced mathematical model is elucidated in the MATLAB system by using the bvp4c procedure. This solution method is competent in delivering multiple solutions once appropriate assumptions are supplied. Findings The results of multiple control parameters have been studied, and the findings are verified to provide more than one solution. The coefficient of skin friction was discovered to be increased by adding nanoparticles volume fraction from 0% to 0.5% and 1%, by almost 1.6% and 3.2%. Besides, increasing the nanoparticles volume fraction improves heat transfer efficiency gradually. The inclusion of the activation energy factor displays a downward trend in the mass transfer rates, consequently reducing the concentration profile. In contrast, the increment of the binary reaction rate greatly facilitates the augmentation of mass transfer rates. There is a significant enhancement in the heat transfer rate, approximately 13.2%, when the suction effect dominates about 10% in the boundary layer flow. Additionally, the results revealed that as the activation energy rises, the temperature and concentration profiles rise as well. It is proved that the activation energy parameter boosts the concentration of chemical species in the boundary layer. A similar pattern emerges as the wedge angle parameter increases. The current effort aims to improve the thermal analysis process, particularly in real-world applications such as geothermal reservoirs, chemical engineering and food processing, which often encountered mass transfer phenomenon followed by chemical reactions with activation energy. Originality/value The present results are original and new for the study of flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据