4.7 Review

Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis?

期刊

出版社

MDPI
DOI: 10.3390/ijms22168932

关键词

osteoporosis; nanoparticles; tissue-barriers; Howship's lacuna; targeting

向作者/读者索取更多资源

Nanoparticles with specific targeting groups have the potential to accumulate at specific lesion sites and release therapeutic agents, but face challenges in crossing blood-tissue barriers in living organisms. However, if their targets are directly accessible from the blood, nanoparticles can avoid these barriers.
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据