4.5 Article

Temperature-dependent structural properties of water molecules confined in TiO2 nanoslits: Insights from molecular dynamics simulations

期刊

FLUID PHASE EQUILIBRIA
卷 430, 期 -, 页码 169-177

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.fluid.2016.10.002

关键词

TiO2; Water; Molecular simulations; Temperature; Nanoconfinement

资金

  1. National Basic Research Program of China [2015CB655301]
  2. National Science Foundation of China [21206070, 21490584, 21576130, 91334202, 11372229]
  3. Qing Lan Project
  4. State Key Laboratory of Materials-Oriented Chemical Engineering [KL13-18]

向作者/读者索取更多资源

The confinement of titanium dioxide (TiO2) significantly affects the nanoconfined water molecules behaviors, manifested structurally as fluid layering and dynamically as slowing down of fluid mobility near the confining surface. In this work, we carried out molecular dynamics simulations to investigate temperature-dependent structural characteristics of water molecules confined in rutile (110) nanoslits. Specifically, we studied the microstructure of two layers of water molecules near TiO2 surface under temperatures ranging from 27 to 800 degrees C. The simulation results showed that the mean residence time of the first layer of water molecules decreased with temperature. A dramatic decreasing rate occurred when the temperature went beyond 300 degrees C. Detailed microstructural investigation of confined water molecules showed that with the increase of temperature, the orientation of some water molecules changed. The possible reason is that water molecules obtained more kinetic energy due to the higher interfacial temperature, so as to increase the probability of forming hydrogen bonds between water molecules in layer I. Moreover, dimers of water molecules, which exhibit higher mobility than water monomers near TiO2 surfaces, began to form at about 300 degrees C. The formation of hydrogen bonds within the first layer of water molecules is largely responsible for the reduction of mean residence time. The results of this work provide perceptive guidelines for the application of TiO2 at high temperatures, such as TiO2-supported catalysts. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据