4.7 Article

Recent development in electrocatalysts for hydrogen production through water electrolysis

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 63, 页码 32284-32317

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.06.191

关键词

Hydrogen production; Electrocatalysts; Water electrolysis; Hydrogen evolution reaction (HER); Oxygen evolution reaction (OER)

资金

  1. Natural Science and Engineering Council of Canada (NSERC)
  2. Canada Research Chair (CRC) Tier I Program

向作者/读者索取更多资源

Hydrogen is a carbon-free alternative energy source for future energy frameworks, offering environmental friendliness and high energy density. Water electrolysis is a sustainable method to produce high purity hydrogen, and developing electrocatalysts for this process is crucial. While precious metals are traditionally used for electrocatalysis, non-precious metal-based electrocatalysts have advantages in cost and eco-friendliness, but further research is needed for their development.
Hydrogen is a carbon-free alternative energy source for use in future energy frameworks with the advantages of environment-friendliness and high energy density. Among the numerous hydrogen production techniques, sustainable and high purity of hydrogen can be achieved by water electrolysis. Therefore, developing electrocatalysts for water electrolysis is an emerging field with great importance to the scientific community. On one hand, precious metals are typically used to study the two-half cell reactions, i.e., hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). However, precious metals (i.e., Pt, Au, Ru, Ag, etc.) as electrocatalysts are expensive and with low availability, which inhibits their practical application. Non-precious metal-based electrocatalysts on the other hand are abundant with low-cost and eco-friendliness and exhibit high electrical conductivity and electrocatalytic performance equivalent to those for noble metals. Thus, these electrocatalysts can replace precious materials in the water electrolysis process. However, considerable research effort must be devoted to the development of these costeffective and efficient non-precious electrocatalysts. In this review article, we provide key fundamental knowledge of water electrolysis, progress, and challenges of the development of most-studied electrocatalysts in the most desirable electrolytic solutions: alkaline water electrolysis (AWE), solid-oxide electrolysis (SOE), and proton exchange membrane electrolysis (PEME). Lastly, we discuss remaining grand challenges, prospect, and future work with key recommendations that must be done prior to the full commercialization of water electrolysis systems. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据