4.7 Article

Self-supported hierarchical porous FeNiCo-based amorphous alloys as high-efficiency bifunctional electrocatalysts toward overall water splitting

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 46, 期 74, 页码 36731-36741

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2021.08.223

关键词

Amorphous electrocatalyst; Hydrogen evolution reaction; Oxygen evolution reaction; Overall water splitting; Micro; nanoporous structure

向作者/读者索取更多资源

A self-supported FeNiCo-based amorphous catalyst with hierarchical micro/nanoporous structure was successfully designed, showing fast reaction kinetics, abundant active sites, and significant catalytic activity under alkaline conditions, enabling stable electrolysis apparatus for overall water splitting.
Rationally designing an efficient and cost-effective bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a primary matter in applying electrocatalytic water splitting. Herein, a self-supported FeNiCo-based amorphous catalyst with a hierarchical micro/nanoporous structure is fabricated by dealloying an amorphous/nanocrystalline precursor. The amorphous nanoporous framework enables the prepared electrocatalyst to afford fast reaction kinetics, abundant active sites, and enhanced electrochemical active surface areas (ECSAs). Such structural advantages and the synergistic effects of the ternary transition metals contribute to a dramatic catalytic activity of this electrocatalyst under alkaline conditions, which delivers the current density of 10 mA cm-2 at a low overpotential of 134 mV for HER and 206 mV for OER, respectively. Furthermore, a full electrolysis apparatus constructed by the self-supported hierarchical micro/nanoporous FeNiCo-based amorphous electrocatalyst as both cathode and anode acquires a dramatically low voltage of 1.58 V operating at 10 mA cm-2 along with stability for more than 24 h for overall water splitting. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据