4.7 Article

Transient heat transfer of impinging jets on superheated wetting and non-wetting surfaces

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2021.121056

关键词

Superhydrophobic; Jet impingement; Boiling heat transfer

资金

  1. National Science Foundation [CBET-1707123]
  2. Utah NASA Space Grant Consortium

向作者/读者索取更多资源

This study demonstrates that surface wettability significantly affects the maximum heat flux and jet thin film spreading, higher initial surface temperature slows down thin film spreading rate and increases heat transfer, while increasing Reynolds number leads to higher heat flux.
Superhydrophobic (SH) surfaces possess desirable anti-fouling properties due to low wettability, but have also been shown to reduce heat transfer to subcooled water in impinging jet scenarios. In this work, superheated silicon substrates with varying wettability (hydrophilic or HPi, hydrophobic or HPo, SH) are quenched by an impinging water jet, where the substrate temperature is above the saturation temperature. Silicon wafers are either oxidized to create HPi surfaces, coated with Teflon to make the surface HPo, or plasma-etched and coated to create the necessary micro-texture for SH conditions. All wafers are integrated with an electric resistance heater and then heated to temperatures of 200-320 degrees C before impingement with an axisymmetric room temperature water jet of varying specified flow rates yielding jet Reynolds numbers between 60 00 and 18,000. High-speed visual data is collected, showing how the lamellar liquid contact region, limited by thermal breakup due to boiling, grows radially as the surface cools to temperatures below saturation. This data is correlated to temperature data recorded on the back side of the wafer using a thermal camera. Results of this study confirm previous conjecture that surface wettability can alter maximum heat flux, which is quantified here for the described scenario by up to 40%, and can also affect jet thin film spreading by up to 50%. Increasing initial surface temperature decreases thin film spreading rate on all surfaces, and increases heat transfer on all but the SH surfaces. Increasing Reynolds number yields an increase in heat flux, and affects both the thin film spreading rate as well as the maximum radius of the thin film region. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据