4.7 Article

Estimating high-spatial resolution surface daily longwave radiation from the instantaneous Global LAnd Surface Satellite (GLASS) longwave radiation product

期刊

INTERNATIONAL JOURNAL OF DIGITAL EARTH
卷 14, 期 11, 页码 1674-1704

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/17538947.2021.1966526

关键词

Surface longwave radiation; surface longwave net radiation; GLASS; time extension method; surface radiation budget

资金

  1. National Key Research and Development Program of China [2016YFA0600101]
  2. National Natural Science Foundation of China [42090011, 41771365, 42071308]
  3. Second Tibetan Plateau Scientific Expedition and Research Program (STEP) [2019QZKK0206]

向作者/读者索取更多资源

This study utilizes time extension methods to estimate high-spatial resolution surface daily longwave radiation, with the linear sine interpolation method showing the best performance. Adjusting the day length improves the accuracy of daily longwave radiation estimations.
In this paper, time extension methods, originally designed for clear-sky land surface conditions, are used to estimate high-spatial resolution surface daily longwave (LW) radiation from the instantaneous Global LAnd Surface Satellite (GLASS) longwave radiation product. The performance of four time methods were first tested by using ground based flux measurements that were collected from 141 global sites. Combined with the accuracy of daily LW radiation estimated from the instantaneous GLASS LW radiation, the linear sine interpolation method performs better than the other methods and was employed to estimate the daily LW radiation as follows: The bias/Root Mean Square Error (RMSE) of the linear sine interpolation method were -6.30/15.10 W/m(2) for the daily longwave upward radiation (LWUP), -1.65/27.63 W/m(2) for the daily longwave downward radiation (LWDN), and 4.69/26.42 W/m(2) for the daily net longwave radiation (LWNR). We found that the lengths of the diurnal cycle of LW radiation are longer than the durations between sunrise and sunset and we proposed increasing the day length by 1.5 h. The accuracies of daily LW radiation were improved after adjusting the day length. The bias/RMSE were -4.15/13.74 W/m(2) for the daily LWUP, -1.3/27.52 W/m(2) for the daily LWDN, and 2.85/25.91 W/m(2) for the daily LWNR. We are producing long-term surface daily LW radiation values from the GLASS LW radiation product.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据