4.7 Article

Preparation of conductive cellulose fabrics with durable antibacterial properties and their application in wearable electrodes

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2021.04.176

关键词

Cellulose; Silver nanoparticles; Antibacterial

资金

  1. Natural Science Foundation of Guangdong Province, China [2018A0303130100]

向作者/读者索取更多资源

The electroless silver plating on fabrics enhances the durability and antibacterial properties of conductive fabrics. After 200 washing cycles, the fabric maintained good electrical conductivity and antibacterial efficiency, indicating the potential for long-lasting use in wearable electronic products.
Electroless silver plating on fabrics can obtain conductive and antibacterial bifunctional materials which can be used as electrodes in wearable electronic products. However, these activities are deteriorated easily after washing because of the falling off of silver coating resulted from the weak adhesion. In order to improve the binding force between silver and cellulose fabrics, 3-mercaptopropytrimethoxysilane (MPTS) was applied to modify cellulose fabrics before silver electroless plating to develop the durable conductive fabrics with excellent antibacterial. The silver nanoparticles (Ag NPs) deposition process was observed via field emission scanning electron microscopy (FESEM), thermal properties were evaluated by thermogravimetric analysis (TGA). A dense and uniform silver layer was formed on the fabric. The initial electrical resistance of the conductive fabric was 0.04 Omega/sq and lowered than 2 Omega/sq after 200 washing cycles. The antibacterial efficiency of the fabric after 200 washing cycles remained 92.82%, compared to 100% with the fabric before washing. Moreover, the inhibition rate was determined by optical density of bacteria suspension at 260 nm and further substantiated by releasing of Ag+ from the fabric. The conductive fabrics were applied as wearable electrodes to capture electrocardiogram (ECG) signals of human in static states and running states. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据