4.7 Article

Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignin

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2021.03.081

关键词

Protobind 1000; Colloid lignin particles (CLP); Cellulose nanocomposite; Antioxidant and antibacterial properties; Phenoxy radicals; Electron paramagnetic resonance

向作者/读者索取更多资源

This study investigated the relationships between lignin molecular and supramolecular structures and their functional properties within cellulose-based solid matrix, used as a model biodegradable polymer carrier. The results show the possibility to tune the performances of these composites by exploiting lignin multi-scale structure. Phenol-enriched oligomers were the compounds most likely to interact with cellulose, leading to the smoothest film surface and highest radical scavenging capacity.
This study investigated the relationships between lignin molecular and supramolecular structures and their functional properties within cellulose-based solid matrix, used as a model biodegradable polymer carrier. Two types of derivatives corresponding to distinct structuration levels were prepared from a single technical lignin sample (PB1000): phenol-enriched oligomer fractions and colloidal nanoparticles (CLP). The raw lignin and its derivatives were formulated with cellulose nanocrystals or nanofibrils to prepare films by chemical oxidation or pressure-assisted filtration. The films were tested for their water and lignin retention capacities, radical scavenging capacity (RSC) and antimicrobial properties. A structural investigation was performed by infrared, electron paramagnetic resonance spectroscopy and microscopy. The composite morphology and performance were controlled by both the composition and structuration level of lignin. Phenol-enriched oligomers were the compounds most likely to interact with cellulose, leading to the smoothest film surface. Their RSC in film was 4-to 6-fold higher than that of the other samples. The organization in CLP led to the lowest RSC but showed capacity to trap and stabilize phenoxy radicals. All films were effective against S. aureus (gram negative) whatever the lignin structure. The results show the possibility to tune the performances of these composites by exploiting lignin multi-scale structure. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据