4.7 Article

Flax shives-PBAT processing into 3D printed fluorescent materials with potential sensor functionalities

期刊

INDUSTRIAL CROPS AND PRODUCTS
卷 167, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.indcrop.2021.113482

关键词

3D printing; Flax; Shives; Milling; X-ray microtomography; Fluorescence

资金

  1. Marie SkodowskaCurie Actions [893040]
  2. Marie Curie Actions (MSCA) [893040] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

The study successfully prepared reinforced filaments containing fluorescent flax particles through extrusion and 3D printing. Microstructural characterization showed that the fluorescent flax particles were homogeneously distributed in the 3D printed material. Despite the low content, a strong fluorescent emission could still be measured.
Incorporation of unused agricultural by-products into materials is a relevant strategy in developing biosourced and economically competitive products that limits the environmental impacts of plastics. Development of 3D printing techniques offers the possibility to design such biomaterials while bringing new functionalities, however, it is critical to characterize and control both the plant material properties and the interactions between the plant material and the polymeric matrix during the whole process, from filament production to 3D printing. In this study, flax shives were selectively milled and then used as a starting material to be grafted to a fluorophore whose fluorescence varies under pH. The resulting fluorescent shives were processed with poly-(butylene-terephthalate) (PBAT) by extrusion to produce a filament reinforced with 10 %-wt of flax shives, which was the subsequently 3D printed. Extensive microstructural characterization (particle size and shape analysis, X-ray microtomography) demonstrated that the flax particles were homogeneously distributed into the 3D printed material. Despite the relatively low content of fluorescent flax shives in the final 3D printed material (1%-wt) and successive heating stages (during extrusion and 3D printing), a strong fluorescent emission could still be measured. This work paves the way for using fluorescent flax shives as reinforcements into composites, thus making 4D materials with potential applications as sensors depending on the fluorophore used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据