4.7 Article

Self-Learning Based Computation Offloading for Internet of Vehicles: Model and Algorithm

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 20, 期 9, 页码 5913-5925

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2021.3071248

关键词

Task analysis; Games; Heuristic algorithms; Servers; Optimization; Nash equilibrium; Computational modeling; Vehicular edge computing; distributed computation offloading; game theory; Nash equilibrium; self-learning

资金

  1. Fundamental Research Funds for the Central Universities
  2. National Natural Science Foundation of China [U1801266, 61731017]
  3. China Scholarship Council

向作者/读者索取更多资源

In this paper, a self-learning based distributed computation offloading scheme for IoV is proposed, establishing a game-theoretic model for optimal offloading decision-making. Through extensive simulations, the scheme outperforms counterparts and achieves significant improvements in time and message overhead.
With the fast development of Internet of Vehicles (IoV), various types of computation-intensive vehicular applications pose significant challenges to resource-constrained vehicles. The emerging Vehicular Edge Computing (VEC) and Edge Intelligence (EI) can alleviate this situation by offloading the computation tasks of vehicles to the roadside edge servers. However, with many vehicles contending for the communication and computation resources at the same time, how to quickly and efficiently make an optimal computation offloading decision for individual vehicles represents a fundamental research issue. In this paper, we propose a self-learning based distributed computation offloading scheme for IoV. Note that without any centralized controller, a fully distributed algorithm is necessary. The proposed scheme is devised based on a game-theoretic model. Specifically, through establishing an offloading framework with communication and computation for IoV, the computation offloading problem is first formulated as a distributed offloading decision-making game, in which each vehicle as a player makes its best response decision to minimize its joint cost (including latency and offloading cost). The existence of Nash Equilibrium can be proved. We then propose a self-learning based distributed computation offloading (DISCO) algorithm to reach the Nash Equilibrium, where a mutually satisfactory solution among vehicles is obtained and no vehicle is willing to change its decision. Using extensive simulations, we verify that DISCO can outperform the counterparts and achieve at least an order-of-magnitude improvement on time overhead and 88% performance gain on message overhead, only at up to 12% performance loss on joint cost over the centralized scheme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据