4.7 Article

Modeling Co-Channel Interference in the THz Band

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 70, 期 7, 页码 6319-6334

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2021.3089427

关键词

Interference; Channel models; Wireless communication; Interchannel interference; Solid modeling; Signal to noise ratio; Shadow mapping; Interference modeling; co-channel interference; signal-to-interference-plus-noise ratio (SINR); signal-to-interference ratio (SIR); terahertz (THz) communications; compound channel model

向作者/读者索取更多资源

The co-channel interference in the THz band can have a significant impact on signal detection and network reliability, requiring appropriate spatial arrangement and coordination to avoid it.
Terahertz (THz) wireless technology is envisioned to enable terabit-per-second (Tbps) and secure transmissions in sixth-generation (6G) communication networks and has attracted attention from academia and industry in recent years. Because the transmission range of THz radios is restricted compared to that of microwave radios, frequency reuses in the THz band become much more flexible and even possible among transceiver pairs in close proximity. However, without appropriate spatial arrangement and coordination, the frequency reuse in the THz band can also lead to severe co-channel interference and result in a low signal-to-interference-plus-noise ratio (SINR) or a signal-to-interference ratio (SIR), which finally degrades signal detection and network reliability. To thoroughly study the co-channel interference in the THz band, we model the co-channel interference by the compound channel model and analyze it in detail. The adopted channel model captures the key features of THz communication, such as, spreading loss, molecular absorption loss, and dynamic shadowing, which is much different and complicated than those used in the low-frequency band. The resulted SINR and SIR are investigated by approximating the sum of co-channel interference as a gamma distribution. The generalized analytical results are also reduced to specialized forms for two special cases, i.e., the single-interferer case and the case of multiple independent and identically distributed (i.i.d.) interferers. Due to the generalized nature of the THz interference model constructed in this paper, the results play a meaningful role in practical implementation and can be easily extended to advanced performance analyses for THz communication systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据