4.7 Article

Deep Learning-Based Traffic Safety Solution for a Mixture of Autonomous and Manual Vehicles in a 5G-Enabled Intelligent Transportation System

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2020.3042504

关键词

Mixed traffic; big data; 5G; deep learning; LSTM; SoftMax; intention recognition

资金

  1. National Natural Science Foundation of China [61373162]
  2. Sichuan Provincial Science and Technology Department Project [2019YFG0183]
  3. Sichuan Provincial Key Laboratory Project [KJ201402]
  4. Japan Society for the Promotion of Science (JSPS) [JP18K18044]
  5. National Key Research and Development Program of China [2019YFB1704700]

向作者/读者索取更多资源

As the intelligent transportation system (ITS) continues to advance, issues related to predicting driving directions and ensuring safety of autonomous vehicles in mixed traffic environments become crucial. Researchers have proposed a deep learning-based traffic safety solution to improve intention recognition rates and real-time performance of autonomous vehicles.
It is expected that a mixture of autonomous and manual vehicles will persist as a part of the intelligent transportation system (ITS) for many decades. Thus, addressing the safety issues arising from this mix of autonomous and manual vehicles before autonomous vehicles are entirely popularized is crucial. As the ITS system has increased in complexity, autonomous vehicles exhibit problems such as a low intention recognition rate and poor real-time performance when predicting the driving direction; these problems seriously affect the safety and comfort of mixed traffic systems. Therefore, the ability of autonomous vehicles to predict the driving direction in real time according to the surrounding traffic environment must be improved and researchers must work to create a more mature ITS. In this paper, we propose a deep learning-based traffic safety solution for a mixture of autonomous and manual vehicles in a 5G-enabled ITS. In this scheme, a driving trajectory dataset and a natural-driving dataset are employed as the network inputs to long-term memory networks in the 5G-enabled ITS: the probability matrix of each intention is calculated by the softmax function. Then, the final intention probability is obtained by fusing the mean rule in the decision layer. Experimental results show that the proposed scheme achieves intention recognition rates of 91.58% and 90.88% for left and right lane changes, respectively, effectively improving both accuracy and real-time intention recognition and improving the lane change problem in a mixed traffic environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据