4.5 Article

Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesion

期刊

ICARUS
卷 362, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2021.114433

关键词

Asteroids,dynamics; Asteroids,rotation; Geological processes; Satellites of asteroids

资金

  1. Universite Cote d'Azur Individual grants for young researchers program of IDEX JEDI
  2. CNES
  3. NASA Planetary Defense Program
  4. DART mission, under NASA [NNN06AA01C]
  5. European Union [870377]
  6. Univ. Cote d'Azur IDEX JEDI

向作者/读者索取更多资源

The study investigated the structural stability and cohesive strength of the binary asteroid Didymos, identifying the critical cohesion needed to maintain its stability and highlighting the impact of different formation pathways. Furthermore, the potential destabilizing effects of the DART impact on this system were explored.
The binary asteroid 65803 Didymos-Dimorphos is the target of the first asteroid deflection test (NASA's Double Asteroid Redirection Test, DART) and the first binary asteroid system that will be characterized by a rendezvous mission (ESA's Hera). The cohesive strength of the fast-spin-primary Didymos is a key factor that could affect the impact outcome and stability of this system. To support the preparation and data interpretation of these missions and gain a better understanding of the formation and evolution of this system, we investigate the structural stability and cohesive strength of Didymos based on current observational information. We use the Didymos radar shape model to construct rubble-pile models consisting of similar to 40,000 to similar to 100,000 particles with different arrangements and size distributions. To investigate the effect of cohesion on the structural stability and dynamical behaviors of Didymos, we explicitly simulate the YORP spin-up process of these rubble-pile models from a slow spin state to Didymos' current spin state using a high-efficiency soft-sphere-discrete-element-model code, pkdgrav. We test the creep stability of Didymos' rubble-pile representation with different values of cohesion and derive the critical amount of cohesion to maintain stability. The results show that Didymos should at least have a minimum bulk cohesion on the order of 10 Pa to maintain its structural stability if the interparticle tensile strength is uniformly distributed. Since the surface particles are less bonded by cohesive contacts than the interior particles, the internal macroscopic cohesion is about three times the surface macroscopic cohesion. We find that the bulk density and particle arrangement and size distribution of Didymos have significant influences on its critical cohesion and failure behaviors, indicating different binary formation pathways. With the critical cohesion, Didymos is at the edge of maintaining a stable shape, and a rapid small decrease in its spin period would excite its rubble-pile structure and lead to reshaping or mass shedding. Whether the DART impact could partially or globally destabilize this system requires further investigation of the full two-body gravitational dynamics and the ejecta evolution. With the expected measurements returned by DART's onboard cubesat LICIACube in 2022 and Hera in 2027, the correlations between Didymos' physical properties and failure behaviors found in this study may be possible to constrain the mechanical properties and evolutionary history of this binary system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据