4.7 Article

Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis)

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 58, 期 -, 页码 622-630

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2016.10.014

关键词

Big-belly seahorse; Lysozyme; Tissue specific mRNA expression; Immune defense; Antibacterial activity

资金

  1. Ministry of Oceans and Fisheries, Korea

向作者/读者索取更多资源

Lysozymes are a family of enzymes that catalyze the hydrolysis of bacterial cell wall, acting as antimicrobial effectors of the innate immune system. In the present study, an ortholog of goose-type lysozyme (ShLysG) from the big-belly seahorse (Hippocampus abdominalis) was identified and characterized structurally and functionally. The full-length cDNA sequence (1213 bp) of ShLysG is comprised of an open reading frame made up of 552 bp, encoding a polypeptide of 184 amino acid (aa) with a predicted molecular mass of 20 kDa. In silico analysis of ShLysG revealed the absence of signal peptide and the presence of a characteristic bacterial soluble lytic transglycosylase (SLT) domain bearing three catalytic residues (Glu(71). Asp(84), and Asp(95)) and seven N-acetyl-o-glucosamine binding sites (Glu(71), Asp(95), Tyr(98), His(99), Ile(117), Tyr(145), and Asn(146)). Homology analysis demonstrated that the aa sequence of ShLysG shared 60.7-67.4% identity and 72.6-79.3% similarity with the orthologs of other teleosts. Phylogenetic analysis of ShLysG indicated a closest relationship with the ortholog from Gadus morhua. In healthy seahorse, ShLysG mRNA showed a constitutive expression in all the tissues examined, with the highest expression in kidney and the least expression in liver. The ShLysG mRNA levels were also shown significant elevation upon the bacterial and pathogen-associated molecular pattern (PAMPs) challenges. Furthermore, lytic activities of ShLysG recombinant protein were detected against several Gram-negative and Gram-positive bacterial species. Taken together, these results suggest that ShLysG might possess a potential immune defensive role against invading microbial pathogens in seahorse. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据