4.6 Article

Plasticity of the human preimplantation embryo: developmental dogmas, variations on themes and self-correction

期刊

HUMAN REPRODUCTION UPDATE
卷 27, 期 5, 页码 848-865

出版社

OXFORD UNIV PRESS
DOI: 10.1093/humupd/dmab016

关键词

fertilization; blastomeres; cleavage; embryo; morula; blastocyst; chromosomes; mosaicism; euploidy

向作者/读者索取更多资源

Recent evidence from time-lapse technology and preimplantation genetic testing highlights the remarkable plasticity of human embryos in vitro, challenging current embryological notions and suggesting the need for new rules governing preimplantation development.
BACKGROUND: IVF for the treatment of infertility offers unique opportunities to observe human preimplantation development. Progress in time-lapse technology (TLT) and preimplantation genetic testing (PGT) has greatly expanded our knowledge of developmental patterns leading to a healthy pregnancy or developmental failure. These technologies have also revealed unsuspected plastic properties of the preimplantation embryo, at macromolecular, cellular and multicellular levels. OBJECTIVE AND RATIONALE: This review focuses on the emerging concept of plasticity of the human embryo as revealed by recent evidence derived from TLT and PGT, calling for an updated and more precise redefinition of the boundaries between normal and abnormal development. SEARCH METHODS: PubMed was used to search the MEDLINE database for peer-reviewed English-language original articles and reviews concerning human preimplantation development. Cross-searches were performed by adopting 'fertilisation', 'pronucleus', 'cleavage', 'multinucleation', 'compaction', 'embryo', 'preimplantation genetic testing', 'aneuploidy', mosaicism', 'micromanipulation', 'timelapse microscopy' and 'IVF/assisted reproduction' as main terms. The most relevant publications, i.e. those concerning major phenomena occurring during normal and abnormal development-with a focus on the human species-were assessed and discussed critically. OUTCOMES: Advances in TLT and PGT have revealed an astonishing plasticity and self-correction ability of the human preimplantation embryo in vitro. At fertilisation, an abnormal number of pronuclei do not always result in the formation of an aneuploid blastocyst. Animal studies and preliminary human observations indicate that combining of parental genomes may occur at the early cleavage stage, if not at fertilisation. Multinucleation occurs with much higher prevalence than previously thought and may be corrected at later cleavage stages. Irregular cleavage (multichotomous, direct, rapid and reverse cleavages) can generate chromosome segregation abnormalities that often lead to developmental arrest, but that sporadically may be confined to cells excluded from the blastocyst, and may sometimes result in viable pregnancy. Mitotic errors can generate mosaic blastocysts, but alternatively normal embryos may form from selective death or clonal depletion of aneuploid cells. WIDER IMPLICATIONS: Deviations from developmental dogmas and the increasing evidence of plasticity of the human embryo challenge current embryological notions and suggest the need to write new rules governing cell cycle, cell determination and chromosome segregation during preimplantation development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据