4.7 Article

Visual experience modulates whole-brain connectivity dynamics: A resting-state fMRI study using the model of radiologists

期刊

HUMAN BRAIN MAPPING
卷 42, 期 14, 页码 4538-4554

出版社

WILEY
DOI: 10.1002/hbm.25563

关键词

brain plasticity; radiologists; resting state fMRI; spontaneous dynamic interactions; visual expertise

资金

  1. National Natural Science Foundation of China [U19B2030, 61976167]
  2. Basic Scientific Research Program [JCKY2017204B102]
  3. Science, Technology Projects of Xi'an, China [201809170CX11JC12]
  4. Fundamental Research Funds for the Central Universities [JB191206]

向作者/读者索取更多资源

Visual expertise is attributable to accumulated experience in a specific domain, leading to widespread neural activities beyond the visual cortex. Studying a group of radiological interns, researchers found that visual experience can modulate brain connectivity, enhancing integration within visual processing circuits and between high-order brain circuits. This controlled and interactive process is influenced by multiple top-down factors and can enhance participants' acquisition of specific visual information.
Visual expertise refers to proficiency in visual recognition. It is attributed to accumulated visual experience in a specific domain and manifests in widespread neural activities that extend well beyond the visual cortex to multiple high-level brain areas. An extensive body of studies has centered on the neural mechanisms underlying a distinctive domain of visual expertise, while few studies elucidated how visual experience modulates resting-state whole-brain connectivity dynamics. The current study bridged this gap by modeling the subtle alterations in interregional spontaneous connectivity patterns with a group of superior radiological interns. Functional connectivity analysis was based on functional brain segmentation, which was derived from a data-driven clustering approach to discriminate subtle changes in connectivity dynamics. Our results showed there was radiographic visual experience accompanied with integration within brain circuits supporting visual processing and decision making, integration across brain circuits supporting high-order functions, and segregation between high-order and low-order brain functions. Also, most of these alterations were significantly correlated with individual nodule identification performance. Our results implied that visual expertise is a controlled, interactive process that develops from reciprocal interactions between the visual system and multiple top-down factors, including semantic knowledge, top-down attentional control, and task relevance, which may enhance participants' local brain functional integration to promote their acquisition of specific visual information and modulate the activity of some regions for lower-order visual feature processing to filter out nonrelevant visual details. The current findings may provide new ideas for understanding the central mechanism underlying the formation of visual expertise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据