4.6 Article

SKAP2 as a new regulator of oligodendroglial migration and myelin sheath formation

期刊

GLIA
卷 69, 期 11, 页码 2699-2716

出版社

WILEY
DOI: 10.1002/glia.24066

关键词

migration; oligodendrocytes; OPC; SKAP2

资金

  1. Deutsche Forschungsgemeinschaft [Ku1477/11-1, ZA 428/12-1]
  2. Interdisziplinares Zentrum fur Klinische Forschung, Universitatsklinikum Munster [KuT3/012/15]

向作者/读者索取更多资源

This study compared the intrinsic properties of oligodendroglial progenitor cells (OPCs) from the spinal cord and brain on both functional and transcriptional levels. It found differences in migration and differentiation capacity between the two populations, as well as differential expression of multiple genes. SKAP2 was identified as a novel regulator of oligodendroglial migration and myelin sheath formation, with its expression affecting OPC migration and morphological maturation.
Oligodendroglial progenitor cells (OPCs) are highly proliferative and migratory cells, which differentiate into complex myelin forming and axon ensheathing mature oligodendrocytes during myelination. Recent studies indicate that the oligodendroglial cell population is heterogeneous on transcriptional and functional level depending on the location in the central nervous system. Here, we compared intrinsic properties of OPC from spinal cord and brain on functional and transcriptional level. Spinal cord OPC demonstrated increased migration as well as differentiation capacity. Moreover, transcriptome analysis revealed differential expression of several genes between both OPC populations. In spinal cord OPC, we confirmed upregulation of SKAP2, a cytoplasmatic adaptor protein known for its implication in cytoskeletal remodeling and migration in other cell types. Recent findings suggest that actin dynamics determine not only oligodendroglial migration, but also differentiation: Whereas actin polymerization is important for process extension, actin destabilization and depolymerization is required for myelin sheath formation. Downregulation or complete lack of SKAP2 in OPC resulted in reduced migration and impaired morphological maturation in oligodendrocytes. In contrast, overexpression of SKAP2 as well as constitutively active SKAP2 increased OPC migration suggesting that SKAP2 function is dependent on activation by phosphorylation. Furthermore, lack of SKAP2 enhanced the positive effect on OPC migration after integrin activation suggesting that SKAP2 acts as modulator of integrin dependent migration. In summary, we demonstrate the presence of intrinsic differences between spinal cord and brain OPC and identified SKAP2 as a new regulator of oligodendroglial migration and sheath formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据