4.5 Article

Experimental Study on Water-Sand Seepage Characteristics in Fractured Rock Mass under Rheological Effect

期刊

GEOFLUIDS
卷 2021, 期 -, 页码 -

出版社

WILEY-HINDAWI
DOI: 10.1155/2021/5593448

关键词

-

资金

  1. National Natural Science Foundation of China [51904113, U1803118, 51974296, 51904112]

向作者/读者索取更多资源

The study found that when the porosity of a fractured rock mass is within a certain range, water-sand mixed fluid does not completely pass through the fractured rock mass and some sand particles are filtered out. Additionally, for different load levels, as the flow through a fractured rock mass tends to be stable, the final porosity of the fractured rock mass decreases exponentially.
This study investigates water-sand bursting disasters associated with fractured rock that affect safe mining in the mining areas of Western China. A broken rock water-sand seepage rheological test device was developed, and rheological tests were conducted on multiple groups of broken rock samples with single-stage axial loading and different load levels. When the rheology of each group of broken rock samples was stable, water-sand mixed fluid was injected into the samples at a certain pressure gradient to conduct water-sand seepage tests on broken rock masses. It was found that when the porosity of a fractured rock mass is within a certain range, the water-sand mixed fluid does not completely pass through the fractured rock mass and some sand particles are filtered by the fractured rock sample. There is an exponential relationship between the sand breaking ability and the sand filtration ability of fractured rock and its initial porosity, and the permeability of fractured rock decreases by a certain extent after sand filtration. However, for different load levels, when the flow through a fractured rock mass tends to be stable, the final porosity of the fractured rock mass decreases exponentially with axial compression. Based on the classical Kelvin rheological model and the basic theory of fractional calculus, a new fractional rheological model has been proposed and the rheological parameters under different load levels were fitted to the model. The new fractional rheological model is better able to describe the rheological characteristics of broken mudstone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据