4.7 Article

Reaction mechanisms for H2O-enhanced dolomite calcination at high pressure

期刊

FUEL PROCESSING TECHNOLOGY
卷 217, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fuproc.2021.106830

关键词

Dolomite; Reaction mechanisms; Calcination; Pressurized gasification; Kinetics; Fluidized bed

资金

  1. Swedish Energy Agency [34721-2]
  2. E.ON
  3. ANDRITZ

向作者/读者索取更多资源

This study investigates the calcination behaviors and mechanisms of dolomite under different H2O and CO2 partial pressures. It was found that under dry thermal conditions, CO2 delays dolomite calcination independently of its partial pressure, while in an H2O atmosphere, calcination may start at a low temperature due to water adsorption.
Despite extensive research, our understanding of the dolomite calcination mechanism remains unclear, especially concerning how dolomite calcination is influenced by a change in H2O and CO2 partial pressure under high-pressure conditions. In this study, dolomite calcination behaviors and mechanisms at different H2O and CO2 partial pressures were investigated using thermogravimetric analysis, differential scanning calorimetry, and scanning electron microscopy. Under dry thermal conditions, CO2 has a delaying effect on dolomite calcination; however, this effect is independent of CO2 partial pressure, indicating that the calcination could be controlled by the CO2 adsorption capacity on dolomite active sites. In an H2O atmosphere, calcination might begin at a low temperature due to the adsorption of H2O on active sites and then be controlled by the dissociation of HCO3-. A delaying effect of H2O was also observed, with the H2O partial pressure being lower than the CO2 partial pressure in an H2O and CO2 mixture. This could be attributed to the formation of CO32- via 2OH(-) + CO2 - CO32- + H2O. A model was developed to predict the dolomite conversion time under isothermal conditions. A process window considering the effect of operating variables on the conversion time at 550-1000 degrees C and H2O partial pressures of 1-20 bar is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据