4.7 Review

Developing fourth-generation biofuels secreting microbial cell factories for enhanced productivity and efficient product recovery; a review

期刊

FUEL
卷 298, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120858

关键词

Advanced biofuels; Heterologous synthesis; Membrane efflux pumps; Product yields and titers; Cytotoxicity

资金

  1. Higher Education Commission, Pakistan (HEC) [NRPU-7300]

向作者/读者索取更多资源

Fourth generation biofuels face challenges such as low product titers, difficult recovery, and high energy consumption. However, genetic manipulation approaches and the use of secreting microbial cell factories show potential in enhancing biosynthesis and recovery, aiming to achieve commercial competitiveness in the future.
Fourth generation (4G) biofuels have been found compatible with engines, storage systems, and transport facilities. Due to advances in synthetic biology and genetic engineering tools, considerable progress has been made in producing 4G biofuels including high-carbon alcohols, long-chain hydrocarbons, terpenoids-based, and/or fatty-acid derived biofuels using Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lypolytica, and Zymomonas mobilis as microbial cellular factories. However, these microbial platforms face various challenges including low product titers, low product yields, difficult product recovery incurring intensive energy consumption, and discharge of large amounts of wastewater. All these issues make the production and recovery of these biofuels expensive and commercially non-competitive. However, various genetic manipulation approaches including overexpression of heat-shock proteins, enhanced production of precursor molecules, regulating redoxbalance, and membrane engineering have been employed to cope with these challenges. This review discusses the progress made in the molecular approaches for the enhanced biosynthesis and easier recovery of these biofuels through employing the secreting microbial cell factories. Besides, based on the data published on membrane transporters in previous fifteen years, selected fungal and bacterial membrane efflux pumps are studied to evaluate their biofuel secretion potential as future targets to be employed in the biofuel secreting microbial cell factories to achieve commercial robustness in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据