4.7 Article

Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations

期刊

FUEL
卷 296, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120611

关键词

Agricultural biomass; Pyrolysis; Char; Tar; Pyrolytic gas; Ansys Chemkin-Pro

资金

  1. European Union [823745]
  2. Ministry of Science and Higher Education, Poland [16.16.110.663]

向作者/读者索取更多资源

This study investigated the pyrolysis of agricultural biomass and found that the quality, yield, and gas component concentration of pyrolytic gas increased with temperature, while the concentration of carbon dioxide decreased. Condensed vapours were found to be rich in phenolic and aromatic compounds.
Biomass wastes are sustainable, renewable, and promising energy sources. In this study, the pyrolysis of agricultural biomass was investigated to determine the most promising process parameters for pyrolytic gas production. The pyrolysis investigations were carried out under nitrogen atmosphere at 300, 400, 500, and 600 ?C on the microscale using simultaneous thermal analysis and a laboratory-scale semi-batch vertical reactor. The solid, liquid, and gaseous products were characterised in detail, including the elemental and chemical composition. The gas and liquid products analyses were provided. It was found that the quality of the pyrolytic gas increased with temperature, both in terms of the pyrolytic gas yield and concentration of gaseous components (hydrogen and methane), whereas the carbon dioxide concentration decreased with temperature. The condensed vapours were rich in phenolic and aromatic compounds, and it was noted that the acetic acid concentration increased with temperature. The chemical functional groups in the char were determined using infrared spectroscopy. The carbon content increased with temperature, whereas the hydrogen content decreased. Further decomposition of the organic matrix was observed with increasing temperature. Additionally, chemical modelling of pyrolytic gas was performed using Ansys Chemkin-Pro software and compared with the experimental results. The computational results showed a good correlation with the measured pyrolytic gas composition, especially in the case of the major gas components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据