4.5 Article

Effects of Slow Oscillatory Transcranial Alternating Current Stimulation on Motor Cortical Excitability Assessed by Transcranial Magnetic Stimulation

期刊

FRONTIERS IN HUMAN NEUROSCIENCE
卷 15, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fnhum.2021.726604

关键词

transcranial alternating current stimulation; transcranial magnetic stimulation; entrainment; plasticity; neural oscillations

资金

  1. U.S. Office of Naval Research Global [N62909-17-1-2139]

向作者/读者索取更多资源

The study investigated the effects of slow oscillatory (SO) tACS on motor cortical excitability and found that tACS had a facilitatory effect on motor cortical excitability that outlasted stimulation. However, there was no evidence supporting entrainment of endogenous oscillations as the underlying mechanism.
Converging evidence suggests that transcranial alternating current stimulation (tACS) may entrain endogenous neural oscillations to match the frequency and phase of the exogenously applied current and this entrainment may outlast the stimulation (although only for a few oscillatory cycles following the cessation of stimulation). However, observing entrainment in the electroencephalograph (EEG) during stimulation is extremely difficult due to the presence of complex tACS artifacts. The present study assessed entrainment to slow oscillatory (SO) tACS by measuring motor cortical excitability across different oscillatory phases during (i.e., online) and outlasting (i.e., offline) stimulation. 30 healthy participants received 60 trials of intermittent SO tACS (0.75 Hz; 16 s on/off interleaved) at an intensity of 2 mA peak-to-peak. Motor cortical excitability was assessed using transcranial magnetic stimulation (TMS) of the hand region of the primary motor cortex (M1(HAND)) to induce motor evoked potentials (MEPs) in the contralateral thumb. MEPs were acquired at four time-points within each trial - early online, late online, early offline, and late offline - as well as at the start and end of the overall stimulation period (to probe longer-lasting aftereffects of tACS). A significant increase in MEP amplitude was observed from pre- to post-tACS (paired-sample t-test; t(29) = 2.64, P = 0.013, d = 0.48) and from the first to the last tACS block (t(29) = -2.93, P = 0.02, d = 0.54). However, no phase-dependent modulation of excitability was observed. Therefore, although SO tACS had a facilitatory effect on motor cortical excitability that outlasted stimulation, there was no evidence supporting entrainment of endogenous oscillations as the underlying mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据