4.7 Article

Generalizing systematic adaptive cluster sampling for forest ecosystem inventory

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 489, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2021.119051

关键词

Design-based inference; Adaptive inventory; Adaptive cluster sampling; Systematic sampling; Estimation; Simulation

类别

资金

  1. National Natural Science Foundation of China [32001252]
  2. International Center for Bamboo and Rattan [1632020029]

向作者/读者索取更多资源

Reliable statistical inference is crucial for forest ecology and management, with systematic adaptive cluster sampling (SACS) being an unbiased and efficient method for inventorying spatially clustered populations. However, challenges such as oversampling and uncertainty in sample formation still exist, leading to the development of a generalized SACS (GSACS) which outperforms systematic sampling (SS) in inventorying clustered populations and making domain-specific estimates.
Reliable statistical inference is central to forest ecology and management, much of which seeks to estimate population parameters for forest attributes and ecological indicators for biodiversity, functions and services in forest ecosystems. Many populations in nature such as plants or animals are characterized by aggregation of tendencies, introducing a big challenge to sampling. Regardless, a biased or imprecise inference would mislead analysis, hence the conclusion and policymaking. Systematic adaptive cluster sampling (SACS) is designunbiased and particularly efficient for inventorying spatially clustered populations. However, (1) oversampling is common for nonrare variables, making SACS a difficult choice for inventorying common forest attributes or ecological indicators; (2) a SACS sample is not completely specified until the field campaign is completed, making advance budgeting and logistics difficult; (3) even for rare variables, uncertainty regarding the final sample still persists; and (4) a SACS sample may be variable-specific as its formation can be adapted to a particular attribute or indicator, thus risking imbalance or non-representativeness for other jointly observed variables. Consequently, to solve these challenges, we aim to develop a generalized SACS (GSACS) with respect to the design and estimators, and to illustrate its connections with systematic sampling (SS) as has been widely employed by national forest inventories and ecological observation networks around the world. In addition to theoretical derivations, empirical sampling distributions were validated and compared for GSACS and SS using sampling simulations that incorporated a comprehensive set of forest populations exhibiting different spatial patterns. Five conclusions are relevant: (1) in contrast to SACS, GSACS explicitly supports inventorying forest attributes and ecological indicators that are nonrare, and solved SACS problems of oversampling, uncertain sample form, and sample imbalance for alternative attributes or indicators; (2) we demonstrated that SS is a special case of GSACS; (3) even with fewer sample plots, GSACS gives estimates identical to SS; (4) GSACS outperforms SS with respect to inventorying clustered populations and for making domain-specific estimates; and (5) the precision in design-based inference is negatively correlated with the prevalence of a spatial pattern, the range of spatial autocorrelation, and the sample plot size, in a descending order.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据