4.7 Article

Film mulching affects root growth and function in dryland maize-soybean intercropping

期刊

FIELD CROPS RESEARCH
卷 271, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.fcr.2021.108240

关键词

Root morphology; Intercropping; Film mulching; Root-shoot synergy; Overyielding

类别

资金

  1. National Natural Science Foundation of China [42077102]
  2. National Key R&D Program of China [2017YFD0201807]

向作者/读者索取更多资源

This study compared two maize-soybean intercropping systems in rainfed farmland and found that intercropped maize exhibited different root systems under varied water conditions, leading to higher grain yield than sole maize. Film mulching of intercropped maize optimized root growth and function, resulting in significantly improved grain yield advantage in the intercropping system.
Understanding the morphological response of maize roots in the presence of soybeans in fields under varied water conditions is vital for identifying maize-dominant intercropping systems suitable for climate change. In this study, two maize-soybean intercropping systems (maize with and without film mulching) were compared with maize and soybean sole crops in rainfed farmland on the Loess Plateau. Different features, including the maize root morphological traits, root vertical distribution, shoot traits, interspecific root overlap, and grain yield of intercrops, were determined after silking in 2017 (dry year) and 2018 (wet year). The intercropped maize (without film mulching) employed a thin root system under dry conditions and a profuse root system under wet conditions, with shallow roots and active root-diameter strategy to adapt to varied water conditions. These features resulted in higher grain yield in per unit area for the intercropped maize (16.97 % overyielding) than sole maize without film mulching. Film mulching of intercropped maize modified the roots with confined growth under dry conditions and inhibited the roots with excessive growth under wet conditions; as a consequence, the two morphologies of intercropped maize root system were reshaped into the optimal one (less profuse but not thin), with S-type vertical distribution (1 m soil profile) for root length and more beneficial root-diameter strategy. Besides, film mulching improved interspecific root interaction through an evident increase in root length or mass in the interspecific overlap regions. Finally, film mulching improved the maize overyielding dramatically (84 %) due to high leaf adaptability and efficient root-shoot synergy in maize plants. Importantly, the maize mulching did not decrease intercropped soybean yield significantly when compared with sole soybean due to the benefits from interspecific facilitation, while it enhanced total grain yield (10.67 %) for the inter cropping system. Thus, film mulching improved maize root morphology and balanced soil resource exploitation and shoot development, consequently strengthening the attainable grain yield in the intercropping system. To conclude, the research elucidates the plant root mechanisms (root morphological changes) underlying over yielding of intercropped maize in varied water conditions. It identifies film mulching of maize as a strategy to optimize root growth and function for higher intercropping yield advantage in dryland.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据