4.5 Article

Single-step Synthesis and Characterization of Zr-MOF onto Wool Fabric: Preparation of Antibacterial Wound Dressing with High Absorption Capacity

期刊

FIBERS AND POLYMERS
卷 23, 期 2, 页码 404-412

出版社

KOREAN FIBER SOC
DOI: 10.1007/s12221-021-0211-y

关键词

Zirconium-based metal-organic framework (Zr-MOF); Antibacterial wool fabric; Herbal extracts; Release kinetic; In-situ synthesis

向作者/读者索取更多资源

Enhancing the effectiveness of curative herbal extracts through novel drug delivery systems is a current research focus. Zr-MOF was synthesized into wool fabric, resulting in improved wash durability and increased absorption capacity. After loading SO and CO extracts, the fabrics exhibited 100% antibacterial activity, with differences in biocompatibility with human skin.
Improvement of curative herbal extracts effectiveness through novel drug delivery systems is a field of study for the researches nowadays. Zirconium-based metal-organic frameworks (Zr-MOFs) are one of the most capable porous nanocarriers that need a biocompatible template to be used in biomedical applications. In this work, Zr-MOF was synthesized into the wool fabric through in-situ one-pot method with different molar ratios. The final fabrics were characterized thoroughly using various techniques and the effect of components on monodispersity and nucleation tendency of Zr-MOF onto the surface of wool were explained. The resultant fabric stablished absolute wash durability, increased air-permeability up to twice and reasonable hydrophilicity. Tensile strength and young modulus decreased 30 and 1244 % and strain increased 66 %. Salvia Officinalis (SO) and Calendula Officinalis (CO) extracts were loaded onto the modified fabrics with 1154 and 1842 % increased absorption capacity. The release profiles showed domination of diffusion mechanism. The wool-MOF-SO and CO displayed both 100 % antibacterial activity against Escherichia coli and 60.95 and 64.64 % against Staphylococcus aureus because of diverse antibacterial components. Calendula Officinalis proved biocompatibility with human skin however Salvia Officinalis exhibited high toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据