4.7 Article

Nitroxide TEMPO-containing PILs: Kinetics study and electrochemical characterizations

期刊

EUROPEAN POLYMER JOURNAL
卷 152, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2021.110453

关键词

Cobalt mediated radical polymerization (CMRP); Polymerized ionic liquid (PILs); Redox polymer and organic cathode

向作者/读者索取更多资源

By synthesizing organic electrode materials with excellent ionic conductivity and combining redox activity with remarkable ionic conductivity, outstanding charge rate performance was achieved in lithium-ion batteries.
The cobalt-mediated radical polymerization (CMRP) of new ionic liquid monomers (ILMs), vinyl imidazolium functionalized with redox-active free radical 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)VIm and its CMR copolymerization with vinyl imidazolium units functionalized with triethylene oxide (TEG)VIm produced a well-defined PILs (co)polymers. The controlled nature of (co)polymerization can be seen from the linear first-order kinetic plot, linear evolutions of the molar mass with total monomer conversion and the low polydispersity of the resulting (co)polymers. By combining the redox activity of (TEMPO)PVIm and remarkable ionic conductivity of (TEG)PVIm, outstanding rate capability performance was achieved with a remarkable capacity of 69 mAh g(-)(1) at 60C. The obtained organic electrode can serve as sustainable electrodes in lithium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据