4.4 Article

Noise-induced dynamics of coupled excitable systems with slow positive feedback

期刊

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
卷 230, 期 14-15, 页码 2725-2735

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjs/s11734-021-00171-4

关键词

-

资金

  1. DFG/FAPESP [IRTG 1740/TRP 2011/50151-0]
  2. BMBF [FKZ: 01GQ1001A]

向作者/读者索取更多资源

In excitable systems, the interplay of noise, feedback, and input from other elements can lead to asynchronous bursting of individual elements and collective bursting of the entire network. For a fixed noise intensity, sparse collective event generation is observed in large networks, while small networks exhibit rapid collective event generation. Collective bursting occurs for intermediate network sizes.
In excitable systems, superthreshold stimuli can cause strong responses-events. Event generation is often modulated by slow feedback processes. The interplay of noise and a positive (upregulating) event-triggered feedback mechanism in excitable systems is studied using the active rotator (AR) model. First, recent results on the dynamics of a single AR with positive feedback are reviewed. Feedback may lead to bursting that results from stochastic switching between a subthreshold and a superthreshold regime. Both regimes coexist in a limited range of noise intensities. Second, novel results on all-to-all coupled ARs in the presence of positive feedback are presented. The interplay of noise, feedback, and input from other ARs can lead to asynchronous bursting of individual elements and collective bursting of the entire network. Collective event generation is strongly shaped by the network size. For a fixed noise intensity, sparse collective event generation is observed in large networks, while small networks exhibit rapid collective event generation. Collective bursting occurs for intermediate network sizes. The presented results contribute to a deeper understanding of the complex interplay of noise and slow feedback processes in interacting excitable systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据