4.7 Article

Design, synthesis and biological evaluation of novel FXIa inhibitors with 2-phenyl-1H-imidazole-5-carboxamide moiety as P1 fragment

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2021.113437

关键词

Biological evaluation; 2-Phenyl-1H-imidazole; FXIa inhibitors

向作者/读者索取更多资源

The novel compound 44g, as an XIa inhibitor, has demonstrated potential therapeutic efficacy for thrombotic diseases by competitively inhibiting FXIa and displaying good selectivity towards other enzymes in the coagulation cascade.
Y Factor XIa, as a blood coagulation enzyme, amplifies the generation of the last enzyme thrombin in the blood coagulation cascade. It was proved that direct inhibition of factor XIa could reduce pathologic thrombus formation without an enhanced risk of bleeding. WSJ-557, a nonpurine imidazole-based xanthine oxidase inhibitor in our previous reports, could delay blood coagulation during its animal experiments, which prompted us to investigate its action mechanism. Subsequently, during the exploration of the action mechanism, it was found that WSJ-557 exhibited weak in vitro factor XIa binding affinity. Under the guide of molecular modeling, we adopted molecular hybridization strategy to develop novel factor XIa inhibitors with WSJ-557 as an initial compound. This led to the identification of the most potent compound 44g with a Ki value of 0.009 mu M, which was close to that of BMS-724296 (Ki = 0.0015 mu M). Additionally, serine protease selectivity study indicated that compound 44g display a desired selectivity, more 400-fold than those of thrombin, factor VIIa and factor Xa in coagulation cascade. Moreover, enzyme kinetics studies suggested that the representative compound 44g acted as a competitive-type inhibitor for FXIa, and molecular modeling revealed that it could tightly bind to the S1, S1' and S2' pockets of factor XIa. Furthermore, in vivo efficacy in the rabbit arteriovenous shunt model suggested that compound 44g demonstrated dose-dependent antithrombotic efficacy. Therefore, these results supported that compound 44g could be a potential and efficacious agent for the treatment of thrombotic diseases. (C) 2021 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据