4.4 Article

Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters

出版社

EDP SCIENCES S A
DOI: 10.1051/m2an/2021025

关键词

PDE constrained optimization; risk-averse optimal control; optimization under uncertainty; PDE with random coefficients; sample average approximation; stochastic approximation; stochastic gradient; Monte Carlo

资金

  1. Center for ADvanced MOdeling Science (CADMOS)
  2. European Union [800898]
  3. Swiss National Science Foundation [172678]

向作者/读者索取更多资源

This study focuses on the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. By investigating methods like gradient-type iterations and conjugate gradient methods, approximate optimal control solutions are obtained, with error and complexity analyses provided.
We consider the numerical approximation of an optimal control problem for an elliptic Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a deterministic, distributed forcing term that minimizes the expected squared L-2 misfit between the state (i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to obtain the approximate optimal control. We provide full error and complexity analyses of the proposed numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in which the expectation in the computation of the steepest descent direction is approximated by Monte Carlo estimators, independent across iterations, with small sample sizes. We show in particular that the second strategy results in an improved computational complexity. The theoretical error estimates and complexity results are confirmed by numerical experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据