4.7 Article

A new model for settling velocity of non-spherical particles

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 28, 期 43, 页码 61636-61646

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-021-14880-9

关键词

Drag coefficient; Settling velocity; Sphericity; Non-spherical particles; Particle Reynolds number; Shape-dependent functions

资金

  1. National Key Research and Development Program of China [2016YFA0600901]
  2. National Natural Science Foundation of China [51879197, 51622905]

向作者/读者索取更多资源

Settlement of non-spherical particles in riverine ecosystems is commonly observed and influenced by both particle and fluid properties. By collecting and studying 828 settling data, a new drag law for non-spherical particles has been developed, allowing for the prediction of settling velocity for particles of various shapes and materials. Further applications in hydrochorous propagule dispersal and sediment transport are projected based on a deeper understanding of the settling process.
The settlement of non-spherical particles, such as propagules of plants and natural sediments, is commonly observed in riverine ecosystems. The settling process is influenced by both particle properties (size, density, and shape) and fluid properties (density and viscosity). Therefore, the drag law of non-spherical particles is a function of both particle Reynolds number and particle shape. Herein, a total of 828 settling data are collected from the literatures, which cover a wide range of particle Reynolds number (0.008-10000). To characterize the influence of particle shapes, sphericity is adopted as the general shape factor, which varies from 0.421 to 1.0. By comparing the measured drag with the standard drag curve of spheres, we modify the spherical drag law with three shape-dependent functions to develop a new drag law for non-spherical particles. Combined with an iterative procedure, a new model is thus obtained to predict the settling velocity of non-spherical particles of various shapes and materials. Further applications in hydrochorous propagule dispersal and sediment transport are projected based on deeper understanding of the settling process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据