4.8 Article

Membrane-Confined Iron Oxychloride Nanocatalysts for Highly Efficient Heterogeneous Fenton Water Treatment

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 55, 期 13, 页码 9266-9275

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.1c01391

关键词

membrane reactor; iron oxychloride; hydroxyl radicals; kinetics; confinement effect

资金

  1. National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment [EEC-1449500]
  2. DOE Office of Science [DE-SC0012704]

向作者/读者索取更多资源

The study achieved the degradation of organic pollutants in complex water matrices by loading iron oxychloride catalysts into the pores of a ceramic ultrafiltration membrane. The membrane, with a pore size that excludes natural organic matter, selectively exposed smaller organics to hydroxyl radicals, effectively inhibiting the degradation of organic pollutants.
Heterogeneous advanced oxidation processes (AOPs) allow for the destruction of aqueous organic pollutants via oxidation by hydroxyl radicals ((OH)-O-center dot). However, practical treatment scenarios suffer from the low availability of short-lived (OH)-O-center dot in aqueous bulk, due to both mass transfer limitations and quenching by water constituents, such as natural organic matter (NOM). Herein, we overcome these challenges by loading iron oxychloride catalysts within the pores of a ceramic ultrafiltration membrane, resulting in an internal heterogeneous Fenton reaction that can degrade organics in complex water matrices with pH up to 6.2. With (OH)-O-center dot confined inside the nanopores (similar to 20 nm), this membrane reactor completely removed various organic pollutants with water fluxes of up to 100 L m(-2) h(-1) (equivalent to a retention time of 10 s). This membrane, with a pore size that excludes NOM (>300 kDa), selectively exposed smaller organics to (OH)-O-center dot within the pores under confinement and showed excellent resiliency to representative water matrices (simulated surface water and sand filtration effluent samples). Moreover, the membrane exhibited sustained AOPs (>24 h) and could be regenerated for multiple cycles. Our results suggest the feasibility of exploiting ultrafiltration membrane-based AOP platforms for organic pollutant degradation in complex water scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据